Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Climate warming is especially pronounced in winter and at high latitudes. Warming winters are leading to the loss of lake ice and changing snow cover on lakes. Historically, lake scientists have paid less attention to the ice cover period, leading to data and theory gaps about the role of winter conditions in lake ecosystem function and the consequences of changing winters. Here we use simple models to show that the latitudinal interaction between ice cover duration and light flux seasonality has profound and underappreciated implications for lakes. Our models focus on light and temperature, two key drivers of ecosystem processes. We show that the relative amount of light arriving in lakes during ice cover increases non‐linearly with latitude and that the light climate of high latitude lakes is much more sensitive to changing winter conditions than that of lower latitude lakes. We also demonstrate that the synchronicity between high light and warm temperatures may decrease with latitude, with implications for primary and secondary production. Our results suggest that ice loss may lead to greater relative change to productivity and biotic interactions in higher latitude lakes and also offer several testable predictions for understanding the consequences of climate‐induced changes across latitudinal gradients.more » « less
-
Abstract AimOne of the primary characteristics that determines the structure and function of marine food webs is the utilization and prominence of energy‐rich lipids. The biogeographical pattern of lipids throughout the ocean delineates the marine “lipidscape,” which supports lipid‐rich fish, mammal, and seabird communities. While the importance of lipids is well appreciated, there are no synoptic measurements or biogeographical estimates of the marine lipidscape. Productive lipid‐rich food webs in the pelagic ocean depend on the critical diapause stage of large pelagic copepods, which integrate lipid production from phytoplankton, concentrating it in space and time, and making it available to upper trophic levels as particularly energy‐rich wax esters. As an important first step towards mapping the marine lipidscape, we compared four different modelling approaches of copepodid diapause, each representing different underlying hypotheses, and evaluated them against global datasets. LocationGlobal Ocean. TaxonCopepoda. MethodsThrough a series of global model runs and data comparisons, we demonstrated the potential for regional studies to be extended to estimate global biogeographical patterns of diapause. We compared four modelling approaches each designed from a different perspective: life history, physiology, trait‐based community ecology, and empirical relationships. We compared the resulting biogeographical patterns and evaluated the model results against global measurements of copepodid diapause. ResultsModels were able to resolve more than just the latitudinal pattern of diapause (i.e. increased diapause prevalence near the poles), but to also pick up a diversity of regions where diapause occurs, such as coastal upwelling zones and seasonal seas. The life history model provided the best match to global observations. The predicted global biogeographical patterns, combined with carbon flux estimates, suggested a lower bound of 0.031–0.25 Pg C yr−1of downward flux associated with copepodid diapause. Main conclusionsResults indicated a promising path forward for representing a detailed biogeography of the marine lipidscape and its associated carbon flux in global ecosystem and climate models. While complex models may offer advantages in terms of reproducing details of community structure, simpler theoretically based models appeared to best reproduce broad‐scale biogeographical patterns and showed the best correlation with observed biogeographical patterns.more » « less
An official website of the United States government
